洋天科技洋天科技
公司簡介訂購方式匯款確認檔案下載 聯絡我們保固說明訂單查詢討論區
電子郵件:

密碼:

忘記密碼
加入會員
  首頁 | 原廠 Arduino® | 特殊服務設計 | 轉接座及轉接板/麵包板 | 開發板/燒錄器/模擬器 | 相容 For Arudino® 週邊及配件 | 旭日 RDK開發板 系列 | OKdo系列 | Saleae 系列 | Adafruit 系列 | ArduCam 系列 | Camera 攝像頭 | ROCK 系列 | Debix系列開發板 | Raspberry Pi 樹莓派 | WalnutPi 核桃派 | Banana Pi 香蕉派 | BeagleBone 狗骨頭 | M5Stack系列 | Micro:bit (BBC)系列 | NVIDIA Jetson Nano系列 | Pololu 系列 | Pycom 系列 | Seeed 系列 | Sparkfun 系列 | WeMos 系列 | 傳感器 | Cubieboard/CubieTruck系列 | Firefly 系列 | Microduino系列 | Orange Pi 香橙派 | PCB板 | PLC 系列 | Robot 機器人 | UDOO 系列 | RedBearLab 系列 | LattePanda系列 | LittleBits 系列 | Libelium 系列 | Luxonis 相機系列 | PCduino | RobotElectronics 系列 | MageDok 顯示屏 | LCD/LCM/TFT/LVDC | Dimension Engineer 系列 | 通訊模組 | 影音器材(含轉換器) | 線材/連結器/轉換器 | 測量儀器 | 馬達/馬逹控制器/電源模組 | 其他 | 焊接/維修工具 | IC零件 | LED燈-裝飾燈 | 工作站迷你電腦 mini PC | 擴大器 | 雕刻機 | 電池 | 電腦周邊 | AI 顯卡 | 停售商品
  首頁 » 商品目錄 » Pololu 系列 » Electronics » Regulators and Power Supplies » PI2118
商品搜尋 進階
 |  購物車內容  |  結帳   
商品分類
  DRVXXXX系列
  Electronics
    Audio
    Computer Interface
    Discrete Components
    Displays
    Electronics Kits
    Electronics Prototyping
    Motion Control Modules
    Programmable Controllers
    RC Interface
    Regulators and Power Supplies
    Sensors
    Signal Adapters and Extenders
    Switches/Buttons/Relays
    Wireless
  G2 High-Power Motor Drivers
  Mechanical Components
  Motion Control Modules
  Robot Kits
  Sensors
Arduino
Pololu
Seeed
Sparkfun
robot-electronics
dimensionengineering
libelium
adafruit
udoo
redbearlab
Arducam
goembed
Saleae
okdo
服務台
公司簡介
退換貨服務
訂購方式
聯絡我們
匯款確認
[<< 前一頁]  瀏覽相同分類產品 2 / 56  [下一頁 >>]
原廠 Adjustable Step-Up/Step-Down Voltage Regulator S7V8A (PI2118)
NT$430
運費NT$50
條碼PI2118
產品說明0

※本產品原廠代理從國外進口,有些交期較長,下訂前請詢問!

The S7V8A switching step-up/step-down regulator efficiently produces an adjustable output between 2.5 V to 8 V from input voltages between 2.7 V and 11.8 V. Its ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below the regulated voltage. The compact (0.45″ × 0.65″) module has a typical efficiency of over 90% and can deliver 500 mA to 1 A across most combinations of input and output voltages.

 

 

Overview

The Pololu step-up/step-down voltage regulator S7V8A is a switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) that uses a buck-boost topology. It takes an input voltage from 2.7 V to 11.8 V and increases or decreases the voltage to a user-adjustable output between 2.5 V and 8 V with a typical efficiency of over 90%. The input voltage can be higher than, lower than, or equal to the set output voltage, and the voltage is regulated to achieve the set output voltage.

This flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above the desired output voltage and drops below the target as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered. For example:

  • A 4-cell battery holder, which might have a 6 V output with fresh alkalines or a 4.0 V output with partially discharged NiMH cells, can be used with this regulator to power a 5 V circuit.
  • A single lithium-polymer cell can run a 3.3 V device through its whole discharge cycle.
  • A disposable 9 V battery powering a 5 V circuit can be discharged to under 3 V instead of cutting out at 6 V, as with typical linear or step-down regulators.

In typical applications, this regulator can deliver up to 1 A continuous when the input voltage is higher than the output voltage (stepping down). When the input voltage is lower than the output voltage (stepping up), the available current decreases as the difference between the voltages increases; please see the graphs at the bottom of this page for a more detailed characterization. The regulator has short-circuit protection, and thermal shutdown prevents damage from overheating; the board does not have reverse-voltage protection.

This regulator is also available with a fixed 3.3 V output or a fixed 5 V output.

Features

  • input voltage: 2.7 V to 11.8 V
  • output voltage adjustable from 2.5 V to 8 V
  • typical continuous output current: 500 mA to 1 A across most combinations of input and output voltages (Actual continuous output current depends on input and output voltages. See Typical Efficiency and Output Current section below for details.)
  • power-saving feature maintains high efficiency at low currents (quiescent current is less than 0.3 mA)
  • integrated over-temperature and short-circuit protection
  • small size: 0.45″ × 0.65″ × 0.1″ (11 × 17 × 3 mm)

 

 

Using the Regulator

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Connections

The step-up/step-down regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to power down the regulator and put it in a low-power state. The quiescent current in this sleep mode is dominated by the current in the 100k pull-up resistor from SHDN to VIN. With SHDN held low, this resistor will draw 10 µA per volt on VIN (for example, the sleep current with a 5 V input will be 50 µA). The SHDN pin can be driven high (above 1.2 V) to enable the board, or it can be connected to VIN or left disconnected if you want to leave the board permanently enabled.

The input voltage, VIN, should be between 2.7 V and 11.8 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive, and you should be wary of destructive LC spikes (see below for more information).

The output voltage, VOUT, is determined by the trimmer potentiometer position. See the Setting the Output Voltage section below for details.

The four connections are labeled on the back side of the PCB, and they are arranged with a 0.1″ spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.

 

 

Setting the Output Voltage

The output voltage can be measured using a multimeter. Turning the potentiometer clockwise increases the output voltage. The output voltage can be affected by a screwdriver touching the potentiometer, so the output measurement should be done with nothing touching the potentiometer.

 

Output voltage settings for the Pololu step-up/step-down voltage regulator S7V8A.

 

Please note that the output voltage can be set below 2.5 V at the low end of the potentiometer’s range and above 8 V at the high end. While this is not likely to damage the regulator, it might not work reliably or its output could become unstable when the output voltage is not within the recommended 2.5-8 V range. In addition, the potentiometer has no physical end stops, which means that the wiper can be turned 360 degrees and into an invalid region in which the output voltage is set to approximately 0.5 V.

The output voltage can be up to 3% higher than normal when there is little or no load on the regulator. The output voltage can also drop depending on the current draw, especially when the regulator is boosting a lower voltage to a higher one (stepping up), although it should remain within 5% of the set voltage.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator has an efficiency between 80% to 95% for most applications. A power-saving feature maintains these high efficiencies even when the regulator current is very low.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows output currents at which this voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents represent the limit of the regulator’s capability and cannot be sustained for long periods, so the continuous currents that the regulator can provide are typically several hundred milliamps lower, and we recommend trying to draw no more than about 1 A from this
regulator throughout its input voltage range.

 

 

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. If you are connecting more than about 9 V, using power leads more than a few inches long, or using a power supply with high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 16 V.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

問與答

目前沒有任何商品問答!
本商品上架日期:2013-05-31.
評價
購物車 更多
空的...
查詢訂單狀態
 
請輸入您的訂單編號
商品通知狀態 更多
通知原廠 Adjustable Step-Up/Step-Down Voltage Regulator S7V8A (PI2118)
更新時通知我
推薦給朋友
 
推薦這個商品給朋友

聯絡方式:手機:0933807110 或 0968222607
E-mail:i0104@ms13.hinet.net(主要信箱) & i03070309@yahoo.com.tw(次要) & a_te0307@hotmail.com & A9215017@mail.ntust.edu.tw & r94922042@ntu.edu.tw