洋天科技洋天科技
公司簡介訂購方式匯款確認檔案下載 聯絡我們保固說明訂單查詢討論區
電子郵件:

密碼:

忘記密碼
加入會員
>  首頁 | >原廠 Arduino® | >特殊服務設計 | >轉接座及轉接板/麵包板 | >開發板/燒錄器/模擬器 | >相容 For Arudino® 週邊及配件 | >旭日 RDK開發板 系列 | >OKdo系列 | >Saleae 系列 | >Adafruit 系列 | >ArduCam 系列 | >Camera 攝像頭 | >ROCK 系列 | >Debix系列開發板 | >Raspberry Pi 樹莓派 | >WalnutPi 核桃派 | >Banana Pi 香蕉派 | >BeagleBone 狗骨頭 | >M5Stack系列 | >Micro:bit (BBC)系列 | >NVIDIA Jetson Nano系列 | >Pololu 系列 | >Pycom 系列 | >Seeed 系列 | >Sparkfun 系列 | >WeMos 系列 | >傳感器 | >Cubieboard/CubieTruck系列 | >Firefly 系列 | >Microduino系列 | >Orange Pi 香橙派 | >PCB板 | >PLC 系列 | >Robot 機器人 | >UDOO 系列 | >RedBearLab 系列 | >LattePanda系列 | >LittleBits 系列 | >Libelium 系列 | >Luxonis 相機系列 | >PCduino | >RobotElectronics 系列 | >MageDok 顯示屏 | >LCD/LCM/TFT/LVDC | >Dimension Engineer 系列 | >通訊模組 | >影音器材(含轉換器) | >線材/連結器/轉換器 | >測量儀器 | >馬達/馬逹控制器/電源模組 | >其他 | >焊接/維修工具 | >IC零件 | >LED燈-裝飾燈 | >工作站迷你電腦 mini PC | >擴大器 | >雕刻機 | >電池 | >電腦周邊 | >AI 顯卡 | >停售商品
  首頁 » 商品目錄 » Pololu 系列 » Electronics » Sensors » 6380
商品搜尋 進階
 |  購物車內容  |  結帳   
商品分類
  DRVXXXX系列
  Electronics
    Audio
    Computer Interface
    Discrete Components
    Displays
    Electronics Kits
    Electronics Prototyping
    Motion Control Modules
    Programmable Controllers
    RC Interface
    Regulators and Power Supplies
    Sensors
      Accelerometers/Gyros/Compasses
      Current Sensors
      Encoders
      Environmental Sensors
      Optical Range Finders
      Proximity Sensors and Range Find
      QTR Reflectance Sensors
    Signal Adapters and Extenders
    Switches/Buttons/Relays
    Wireless
  G2 High-Power Motor Drivers
  Mechanical Components
  Motion Control Modules
  Robot Kits
  Sensors
Arduino
Pololu
Seeed
Sparkfun
robot-electronics
dimensionengineering
libelium
adafruit
udoo
redbearlab
Arducam
goembed
Saleae
okdo
服務台
公司簡介
退換貨服務
訂購方式
聯絡我們
匯款確認
[<< 前一頁]  瀏覽相同分類產品 11 / 13  [下一頁 >>]
▼LPS331AP Pressure/Altitude Sensor Carrier with Voltage Regulato
NT$392
運費NT$50
條碼6380
產品說明0

※本產品原廠代理從國外進口,有些交期較長,下訂前請詢問!

LPS331AP Pressure/Altitude Sensor Carrier with Voltage Regulator

  This carrier for ST’s LPS331AP digital barometer measures pressures from 260 mbar to 1260 mbar (26 kPa to 126 kPa) with absolute accuracy down to ±2 mbar (0.2 kPa) and typical RMS noise of 0.02 mbar (0.002 kPa) in high-resolution mode. These pressures can easily be converted to altitudes. The board has a 3.3 V linear regulator and integrated level shifters that allow it to work over an input voltage range of 2.5 V to 5.5 V, and the 0.1″ pin spacing makes it easy to use with standard solderless breadboards and 0.1″ perfboards. The sensor offers I²C and SPI interfaces.

 

 

 

Overview

  This board is a compact (0.4″ × 0.9″) carrier for ST’s LPS331AP MEMS absolute pressure sensor, or barometer; we therefore recommend careful reading of the LPS331AP datasheet (453k pdf) before using this product. The LPS331 is a great IC, but its small, leadless, LGA package makes it difficult for the typical student or hobbyist to use. It also operates at voltages below 3.6 V, which can make interfacing difficult for microcontrollers operating at 5 V. This carrier board addresses these issues by incorporating additional electronics, including a 3.3 V voltage regulator and level-shifting circuits, while keeping the overall size as compact as possible. The board ships fully populated with its SMD components, including the LPS331AP, as shown in the product picture.

  The LPS331 features embedded temperature compensation and has many configurable options, including selectable resolutions, a choice of output data rates, and two programmable external interrupt signals. Its pressure output has an absolute accuracy as low as ±2 mbar (0.2 kPa), with RMS noise of 0.02 mbar (0.002 kPa) in the highest-resolution mode. Pressure and temperature sensor data are available through a digital interface, which can be configured to operate in either I²C or SPI mode, and can be used for altimetry. (See the Sample Code section below for an Arduino library that can be used to turn this sensor into an altimeter).

  The carrier board includes a low-dropout linear voltage regulator that provides the 3.3 V required by the LPS331, which allows the sensor to be powered from a 2.5 V to 5.5 V supply. The regulator output is available on the VDD pin and can supply almost 150 mA to external devices. The breakout board also includes a circuit that shifts the I²C/SPI clock and data in lines to the same logic voltage level as the supplied VIN, making it simple to interface the board with 5 V systems, and the board’s 0.1″ pin spacing makes it easy to use with standard solderless breadboards and 0.1″ perfboards.

  For sensor fusion applications, AltIMU-10 inertial measurement unit combines the LPS331AP with an L3GD20 3-axis gyro and an LSM303DLHC 3-axis accelerometer and 3-axis magnetometer on a single board, providing ten independent readings that can be used to calculate an absolute orientation and altitude.

Specifications

  • Dimensions: 0.4″ × 0.9″ × 0.1″ (10 mm × 23 mm × 3 mm)
  • Weight without header pins: 0.6 g (0.02 oz)
  • Operating voltage: 2.5 V to 5.5 V
  • Supply current: 2 mA
  • Output format (I²C/SPI): 24-bit pressure reading (4096 LSb/mbar)
  • Sensitivity range: 260 mbar to 1260 mbar (26 kPa to 126 kPa)

Included components

  A 1×9 strip of 0.1″ header pins and a 1×9 strip of 0.1″ right-angle header pins are included, as shown in the picture below. You can solder the header strip of your choice to the board for use with custom cables or solderless breadboards, or you can solder wires directly to the board itself for more compact installations.

 

 

 

 

  The board has one mounting hole that works with #2 and M2 screws (not included).

Using the LPS331

  Connections

  Regardless of the interface being used to communicate with the LPS331AP, its VIN pin should be connected to a 2.5 V to 5.5 V source, and GND should be connected to 0 volts. (Alternatively, if you are using the sensor with a 3.3 V system, you can leave VIN disconnected and bypass the built-in regulator by connecting 3.3 V directly to VDD.)

  A minimum of two logic connections are necessary to use the LPS331 in I²C mode (this is the default mode): SCL and SDA. These should be connected to an I²C bus operating at the same logic level as VIN.

  To use the LPS331 in the default SPI mode, four logic connections are required: SPC, SDI, SDO, and CS. These should be connected to an SPI bus operating at the same logic level as VIN. The SPI interface operates in 4-wire mode by default, with SDI and SDO on separate pins, but it can be configured to use 3-wire mode so that SDO shares a pin with SDI.

LPS331AP pressure/altitude sensor carrier with voltage regulator, labeled top view.
LPS331AP pressure/altitude sensor carrier with voltage regulator in a breadboard.

Pinout

PIN Description
VDD Regulated 3.3 V output. Almost 150 mA is available to power external components. (If you want to bypass the internal regulator, you can instead use this pin as a 3.3 V input with VIN disconnected.)
VIN This is the main 2.5 V to 5.5 V power supply connection. The SCL/SPC and SDA/SDI level shifters pull the I²C and SPI bus high bits up to this level.
GND The ground (0 V) connection for your power supply. Your I²C or SPI control source must also share a common ground with this board.
SDA/SDI/SDO Level-shifted I²C data line and SPI data in line (also doubles as SDO in 3-wire mode): HIGH is VIN, LOW is 0 V
SCL/SPC Level-shifted I²C/SPI clock line: HIGH is VIN, LOW is 0 V
SDO/SA0 SPI data out line in 4-wire mode: HIGH is VDD, LOW is 0 V. This output is not level-shifted. Also used as an input to determine I²C slave address (see below).
CS SPI enable (chip select). Pulled up to VDD to enable I²C communication by default; drive low to begin SPI communication.
INT2 Programmable interrupt, a 3.3-V-logic-level output. This output is not level-shifted.
INT1 Programmable interrupt, a 3.3-V-logic-level output. This output is not level-shifted.

Schematic Diagram

 

 

 

  The above schematic shows the additional components the carrier board incorporates to make the LPS331AP easier to use, including the voltage regulator that allows the board to be powered from a 2.5 V to 5.5 V supply and the level-shifter circuit that allows for I²C and SPI communication at the same logic voltage level as VIN. This schematic is also available as a downloadable PDF (156k pdf).

I²C Communication

  With the CS pin in its default state (pulled up to VDD), the LPS331AP can be configured and its pressure reading can be queried through the I²C bus. Level shifters on the I²C clock (SCL) and data (SDA) lines enable I²C communication with microcontrollers operating at the same voltage as VIN (2.5 V to 5.5 V). A detailed explanation of the I²C interface on the LPS331 can be found in its datasheet (453k pdf), and more detailed information about I²C in general can be found in NXP’s I²C-bus specification (371k pdf).

  In I²C mode, the sensor’s 7-bit slave address has its least significant bit (LSb) determined by the voltage on the SA0 pin. The carrier board pulls SA0 to VDD through a 4.7 kΩ resistor, making the LSb 1 and setting the slave address to 1011101b by default. If the pressure sensor’s selected slave address happens to conflict with some other device on your I²C bus, you can drive SA0 low to set the LSb to 0.

  The I²C interface on the LPS331 is compliant with the I²C fast mode (400 kHz) standard. In our tests of the board, we were able to communicate with the chip at clock frequencies up to 400 kHz; higher frequencies might work but were not tested. It is missing 50 ns spike suppression on the clock and data lines, and additional pull-ups on the clock and data lines might also be necessary to achieve compliant signal timing characteristics.

SPI Communication

  To communicate with the LPS331AP in SPI mode, the CS pin (which the board pulls to VDD through a 4.7 kΩ resistor) must be driven low before the start of an SPI command and allowed to return high after the end of the command. Level shifters on the SPI clock (SPC) and data in (SDI) lines enable SPI communication with microcontrollers operating at the same voltage as VIN (2.5 V to 5.5 V).

  In the default 4-wire mode, the gyro transmits data to the SPI master on a dedicated data out (SDO) line that is not level-shifted. If the SPI interface is configured to use 3-wire mode instead, the SDI line doubles as SDO and is driven by the LPS331 when it transmits data to the master. A detailed explanation of the SPI interface on the LPS331 can be found in its datasheet (453k pdf).

Sample Code

  We have written a basic Arduino library for the LPS331 that makes it easy to interface this sensor with an Arduino. The library makes it simple to configure the LPS331 and read the raw pressure data through I²C, and it provides functions for calculating altitude based on the measured pressure for those looking to use this sensor as an altimeter.

Protocol Hints

  The datasheet provides all the information you need to use this sensor, but picking out the important details can take some time. Here are some pointers for communicating with and configuring the LPS331AP that we hope will get you up and running a little bit faster:

  • The pressure sensor is in power down mode by default. You have to turn it on by writing the appropriate value to the CTRL_REG1 register to choose an output data rate.
  • You can read or write multiple registers in a single I²C command by asserting the most significant bit of the register address to enable address auto-increment.
  • You can enable the same auto-increment feature in SPI mode by asserting the second bit (bit 1, called the MS bit in the datasheet) of an SPI command.

 

問與答

目前沒有任何商品問答!
本商品上架日期:2013-05-30.
評價
<%CART_CACHE%>
查詢訂單狀態
 
請輸入您的訂單編號
商品通知狀態 更多
通知▼LPS331AP Pressure/Altitude Sensor Carrier with Voltage Regulato
更新時通知我
推薦給朋友
 
推薦這個商品給朋友
145 - Table '.\commerce\whos_online' is marked as crashed and should be repaired

select count(*) as count from whos_online where session_id = '670466ca29c6a2950066b2ebff597182'

[TEP STOP]